INA smartsurv

K. A. Garrett, University of Florida

Identifying key sampling nodes, as part of an impact network analysis

Impact network analysis (INA) is designed to address multiple aspects of linked socioeconomic networks (spread of ideas, money, influence, etc.) and biophysical networks (spread of new varieties, certified seed, pathogens, pests, etc.). This document introduces the smartsurv function, and gives results from the first experiment in the following paper:

The example given in this vignette addresses identifying the best locations in a network for sampling to quickly detect a spreading species: for example, a pathogen or new plant genotype. A node is better for sampling if the pathogen is likely to be detected at that node before the pathogen has spread very far through the network. For example, an isolated node would be a poor sampling choice because the pathogen would likely spread widely before it reaches the isolated node.

Examples of this type of analysis also appear in the following papers.

In the simplest version of the analysis, an invasive species is equally likely to enter the epidemic/spread network at any node, and then moves through the network. In this version of the analysis, it enters the network at only one node (the “introduction node”). Each node in the network (each potential “sampling node”) is then evaluated to determine how early the pathogen can be detected, in terms of how many nodes remain uninfected when the pathogen’s presence in the network is detected at the sampling node. A summary of the performance of a node indicates how early the pathogen is detected at that node, after entering the network at each node in turn. That is, if there are N nodes, there would be N potential introduction nodes for the pathogen and N analyses of how early the pathogen could be detected at the sampling node being evaluated.

An analysis like this, focused on the biophysical network, may be useful even when information is limited about the socioeconomic network. Or information about the socioeconomic network may be incorporated in the form of weights indicating the likelihood that a node is the point of introduction of the species in the network. Nodes associated with less-informed managers may be at higher risk of being the introduction node for an invasive species. Or environmental conditions might make initial establishment of a pathogen more likely at some nodes than others. In this weighted analysis, the performance of a sampling node would be evaluated taking the weights (likelihood of introduction) into account, so that overall performance would be weighted toward the results for more likely introduction nodes.

This vignette starts from the simplest versions of analyses and builds up to a more complete analysis. If you would prefer to jump to a full analysis, you could skip to the description of the function smartsurv, below.
Getting the INA package from GitHub

An updated version of INA is available on GitHub.

Note that if you do not already have the package devtools, you will need to install it once (using the command commented out below)

Then you will need to install INA from GitHub (using the command commented out below)

```r
# use the following three commented commands if you do not yet have
# INA or need to update the version

# install.packages("devtools") # use this command if you do not yet have devtools
# installed

#library(devtools)

#devtools::install_github("GarrettLab/INA")

library(INA)

library(igraph)
```

A simple example, illustrating the functions used by the main function smartsurv

Consider a simple adjacency matrix, which will be used to illustrate the functions.

Note that this function currently assumes that the diagonal of the adjacency matrix is composed of 1’s, meaning that once a node is invaded, it stays invaded

```r
Amat <- matrix(c(1,0,0,1,0,0,0,1,1,0,1,1,1,1,1),nrow=4,ncol=4)

#Make an igraph-formatted version of the adjacency matrix
Amati <- graph.adjacency(Amat)

#Create a layout for the matrix to make comparison of the structure easier in
#examples throughout this vignette
layout.ex <- layout.kamada.kawai(Amat)

plot(Amati, layout=layout.ex, vertex.color='lightblue')
```
each potential link has probability 0.7 of existing in one realization
sAmat <- Amat * 0.7

Illustration for a single starting node (onestart function)

For a given introduction node (only one at this point), onestart yields two outputs for one realization.

Output object outmat has rows=time steps, columns = nodes, and entries = invasion status for each node at each time step (1 = invaded, 0 = not invaded).

Output object sampnodes has rows = nodes, first column = time step at which invasion is detected (Inf if node is never reached), second column = the number of nodes invaded at the time of detection, third column = the number of nodes not invaded at the time of detection.

in this case, the second node was selected as the starting point
onestart(adjmat=Amat, start.choice=2, stoch=F)

```r
## $outmat
## 1  0  1  0  0
## 2  0  1  1  1
## 3  0  1  1  1
##
## $sampnodes
## firstt numinvt numnotinvt
## [1,] Inf   3     1
## [2,]  1    1     3
## [3,]  2    3     1
## [4,]  2    3     1
```

onestart(adjmat=sAmat, start.choice=2, stoch=T) # stochastic version

```r
## $outmat
## 1  0  1  0  0
## 2  0  1  1  1
```
The function multistart summarizes this analysis across all potential starting points.

The output is a matrix with rows = starting nodes (introduction nodes), columns = sampling nodes, and entries = number of nodes not invaded by time detected at the sampling node having started at the introduction node.

For the stochastic case, the result is only based on one realization (function smartsurv, described below, evaluates multiple realizations).

Note that the diagonal contains threes, because when a node is both the starting point and the sampling point, the invasion will only have reached one node before detection and the remaining three remain free of the invasion.

The output for the deterministic version is:

```
multistart(adjmat=Amat, stoch=F)
```

```
[1,] 3 1 0 1
[2,] 1 3 1 1
[3,] 2 2 3 2
[4,] 3 3 3 3
```

The output for the stochastic version is:

```
multistart(adjmat=sAmat, stoch=T)
```

```
[1,] 3 1 0 1
[2,] 2 3 2 2
[3,] 2 2 3 2
[4,] 3 3 3 3
```

For the deterministic version, let's plot the network again with the coloring of the nodes indicating how many nodes remain free of the invasion

For this we take the mean across all the potential starting nodes (giving all the starting nodes equal weight, equal probability of being the introduction node, for now)

```
temp <- multistart(adjmat=Amat, stoch=F)
temp
```

```
[1,] 3 1 0 1
[2,] 1 3 1 1
[3,] 2 2 3 2
[4,] 3 3 3 3
```
numinvfree <- \texttt{colMeans(temp)} \# trait for coloring nodes
uminvfree

[1] 2.25 2.25 1.75 1.75

nnodes <- \texttt{dim(Amat)[1]} \# the total number of nodes

pal1 <- \texttt{viridis_pal(option="C", direction = -1, end = .8)}

create palette that incorporates the possible extremes in terms of number of
nodes free from invasion (0 and nnodes-1) to make comparison across figures
easier
nodecol = \texttt{pal1(15)[as.numeric(cut(c(0, numinvfree, (nnodes - 1)), breaks = 15))]}
nodecol <- nodecol[2:(nnodes + 1)]

\texttt{plot(Amati, vertex.frame.color = nodecol, vertex.label.cex = 0.7, vertex.label.color = 'white', edge.curved = F, vertex.color = nodecol, layout = layout.ex, sub = 'Darker colors indicate better sampling nodes', main = 'All starting nodes equally likely (deterministic)')}

All starting nodes equally likely (deterministic)

Darker colors indicate better sampling nodes
The function smartsurv performs the same analysis, for the specified number of realizations

The first component of the output from smartsurv is the response for each simulation - nrealz outputs from multistart (in this example, 10 realizations). The next component of the output is the mean across the realizations The final component is the variance across realizations

Because columns represent potential sampling nodes, the mean of a column (in the second component of the output, meanarr) is the mean number of nodes free of invasion by the time the invasion would be detected at that node. The mean of the variance in a column (in the third component of the output, vararr) indicates how consistently the mean number of nodes would have been free of invasion.

```r
ss.out <- smartsurv(adjmat = sAmat,
                      stoch = T,
                      nrealz = 100)

# mean across the realizations
ss.out$meanarr
```

```r
## [1,] 3.00 1.86 1.33 1.64
## [2,] 1.77 3.00 1.94 1.77
## [3,] 2.59 2.59 3.00 2.59
## [4,] 3.00 3.00 3.00 3.00
```

```r
# variance across the realizations
ss.out$vararr
```

```r
## [1,] 0.0000000 0.5458586 1.2940404 0.8185859
## [2,] 0.6637374 0.0000000 0.5418182 0.6637374
## [3,] 0.2443434 0.2443434 0.0000000 0.2443434
## [4,] 0.0000000 0.0000000 0.0000000 0.0000000
```

```r
# a few of the individual realizations
ss.out$outarr[,,1:3]
```

```r
## , , 1
## [1,] 3 2 2 2
## [2,] 2 3 2 2
## [3,] 2 2 3 2
## [4,] 3 3 3 3
##
## , , 2
## [1,] 3 3 3 3
## [2,] 1 3 1 1
## [3,] 2 2 3 2
## [4,] 3 3 3 3
```
, , 3
##
[1,] 3 1 0 1
[2,] 1 3 2 1
[3,] 3 3 3 3
[4,] 3 3 3 3

the mean number of nodes free of invasion for each sampling node (averaged across all the potential starting nodes)
numinvfree <- colMeans(ss.out$meanarr) # trait for coloring nodes
numinvfree

[1] 2.5900 2.6125 2.3175 2.2500

Coloring nodes based on their role in sampling: the mean number of nodes free of invasion when invasion detected at sampling node
nnodes <- nrow(Amat) # the total number of nodes
pal1 <- viridis_pal(option="C", direction = -1, end = 0.8)

create palette that incorporates the possible extremes in terms of number of nodes free from invasion (0 and nnodes-1) to make comparison across figures easier
nodecol = pal1[15][as.numeric(cut(c(0, numinvfree, (nnodes - 1)), breaks = 15))]
nodecol <- nodecol[2:(nnodes + 1)]

plot(Amati,
 vertex.frame.color = nodecol,
 vertex.label.cex = 0.7,
 vertex.label.color = 'white',
 edge.curved = F,
 vertex.color = nodecol,
 layout = layout.ex,
 sub = 'Darker colors indicate better sampling nodes',
 main = 'All starting nodes equally likely (realz=100)')
All starting nodes equally likely (realz=100)

Darker colors indicate better sampling nodes

Weighted likelihood of a node being an entry point into network

The calculations of means up to this point have been based on the assumption that each node is equally likely to be the starting node.

The function `smartsurv.weight` uses output from `smartsurv` to evaluate the mean number of nodes free of invasion when invasion would be detected at each potential sampling node, where potential starting nodes may have different probabilities of functioning as starting nodes. For example, higher risk of being the starting node might result from a node’s role as a port, weather conditions associated with a node, or lack of management information at the node.

Suppose the weights indicating the probability that each of four nodes is the introduction node for an invasion are as follows.

```r
# weights indicating the relative likelihood that each of four nodes is the introduction node for an invasion
wtvec.ex <- c(0.001, 0.2, 0.798, 0.001)

msf.outex <- smartsurv(adjmat = sAmat,
                       stoch = T,
                       nrealz = 10)

temp <-
  smartsurv.weight(ss.out = msf.outex,
                   adjmat = sAmat,
                   wtvec = wtvec.ex)
```

Note that smartsurv.weight gives output that includes number of nodes invasion # free
numinvfree <- temp$tsampfree$sampfree # trait for coloring nodes

numinvfree

[1] 2.5206 2.7594 2.7583 2.5193

nnodes <- dim(Amat)[1] # the total number of nodes

pal1 <- viridis_pal(option = "C",
 direction = -1,
 end = .8)

create palette that incorporates the possible extremes in terms of number of
nodes free from invasion (0 and nnodes-1) to make comparison across figures
easier
nodecol = pal1[15][as.numeric(cut(c(0, numinvfree, (nnodes - 1)), breaks = 15))]
nodecol <- nodecol[2:(nnodes + 1)]

plot(Amati,
 vertex.frame.color = nodecol,
 vertex.label.cex = 0.7,
 vertex.label.color = 'white',
 edge.curved = F,
 vertex.color = nodecol,
 layout = layout.ex,
 sub = 'Darker colors indicate better sampling nodes',
 main = 'Node 3 more likely starting node')
Suppose node 1 is more likely to be the starting node

weights indicating the relative likelihood that each of four nodes is the introduction node for an invasion
wtvec.ex <- c(0.793, 0.2, 0.001, 0.001)

msf.outex <- smartsurv(adjmat = sAmat, stoch = T, nrealz = 10)

temp <- smartsurv.weight(ss.out = msf.outex, adjmat = sAmat, wtvec = wtvec.ex)

Note that startwt gives output that includes number of nodes invasion free
numinvfree <- temp$tsampfree$sampfree # trait for coloring nodes

[1] 2.6844 2.2707 1.7534 1.9707

create palette that incorporates the possible extremes in terms of number of nodes free from invasion (0 and nnodes-1) to make comparison across figures
easier
nodecol = pal1(15)[as.numeric(cut(c(0, numinvfree, (nnodes - 1)), breaks = 15))]
nodecol <- nodecol[2:(nnodes + 1)]
#smartsurv.weight(ss.out=msf.outex, adjmat5=sAmat, wtvec=wtvec.ex,
#nodenam=c("KS","NE","ND","SD"))

Note that weighting has changed the outcome in this example. When node 3 is much more likely to be the starting location, the importance for sampling shifted.

Applying the analyses to some larger networks

In this experiment, key nodes for sampling are identified for a set of biophysical network types.

The importance of nodes for sampling by the criteria developed here is evaluated for nine scenarios, each combination of three types of networks and three types of weighting. The three types of networks considered here are random (Erdos-Renyi), small world, and power law (Barabasi). The three types of weighting of potential starting nodes are unweighted, weights proportional to node degree, and weights inversely proportional to node degree.
Random network

Random network: nodes equally likely to be the starting node

```r
# generate a directed random network with 50 nodes
random.eq <- sample_gnp(
  n = 50,
  p = 0.05,
  directed = T,
  loops = F
)

layout.random <- layout_with_kk(random.eq)

plot(
  random.eq,
  edge.arrow.size = 0.3,
  vertex.size = 10,
  vertex.label.cex = 0.5,
  layout = layout.random,
  vertex.color = 'lightblue'
)
```

```
# find the value of nodes for sampling based on a deterministic model

temp1 <- as_adjacency_matrix(random.eq, sparse = F)
diag(temp1) <- 1  # nodes invaded stay invaded
temp2 <- multistart(adjmat = temp1, stoch = F)

numinvfree <- colMeans(temp2)  # trait for coloring nodes
numinvfree
```

```
## [37]  9.38  9.38 29.32 29.32 23.68 23.68 32.22 32.22 22.94 22.94 19.36 19.36 16.84 16.84 27.10 27.10 22.18 22.18 10.20 10.20 27.88 27.88 27.84
## [49] 22.46 17.50
```
nnodes <- dim(temp1)[1] # the total number of nodes

pal1 <- viridis_pal(option = "C",
 direction = -1,
 end = .8)

create palette that incorporates the possible extremes in terms of number of
nodes free from invasion (0 and nnodes-1) to make comparison across figures
easier
nodecol = pal1(15)[as.numeric(cut(c(0, numinvfree, (nnodes - 1)), breaks = 15))]
nodecol <- nodecol[2:(nnodes + 1)]

plot(random.eq,
 vertex.frame.color = nodecol,
 vertex.label.cex = 0.5,
 vertex.label.color = 'white',
 vertex.size = 10,
 edge.arrow.size = 0.3,
 edge.curved = F,
 vertex.color = nodecol,
 layout = layout.random,
 sub = 'Darker colors indicate better sampling nodes',
 main = 'Random graph: all starting nodes equally likely (deterministic)'
)

Random graph: all starting nodes equally likely (deterministic)

Darker colors indicate better sampling nodes
Random network: likelihood a node is the starting node is proportional to node degree

As an example, suppose that for the same network, the likelihood that the species enters the network at a given node is proportional to node degree. This might be reasonable if, for example, nodes of high degree in the known network are also more likely to be linked in other, unknown networks.

```r
# find the degree for each node and construct a proportional weight from it
wtintermed <- degree(random.eq, mode = "all", loops = F)
wtvec1 <- wtintermed / sum(wtintermed)

temp1 <- as_adjacency_matrix(random.eq, sparse = F)
diag(temp1) <- 1 # nodes invaded stay invaded
msf.outex <- smartsurv(adjmat = temp1,
                        stoch = F,
                        nrealz = 1)

temp <-
  smartsurv.weight(ss.out = msf.outex,
                   adjmat = temp1,
                   wtvec = wtvec1)

# Note that startwt gives output that includes number of nodes invasion free
numinvfree <- temp$tsampfree$sampfree # trait for coloring nodes
numinvfree


nnodes <- dim(temp1)[1] # the total number of nodes

pal1 <- viridis_pal(option = "C",
                    direction = -1,
                    end = .8)

# create palette that incorporates the possible extremes in terms of number of
# nodes free from invasion (0 and nnodes-1) to make comparison across figures
# easier
nodecol = pal1(15)[as.numeric(cut(c(0, numinvfree, (nnodes - 1)), breaks = 15))]
nodecol <- nodecol[2:(nnodes + 1)]

plot(
    random.eq,
    vertex.frame.color = nodecol,
    vertex.label.cex = 0.5,
    vertex.label.color = 'white',
    vertex.size = 10,
    edge.arrow.size = 0.3
)
```
Random graph: higher degree nodes more likely starting nodes (deterministic links)

Darker colors indicate better sampling nodes

Note: “deterministic links” here refers to how the links generated when the random network was formed are maintained rather than having some probability of disappearing as they would in the stochastic option for the model.

Random network: likelihood a node is the starting node is inversely proportional to node degree

In this case, suppose the likelihood that a node is the introduction point for an invasive in the systems is inversely proportional to node degree. This could be logical if higher node degree for potential invasive movement is associated with higher node degree for information flow, for example.

```
# find the degree for each node and construct a weight inversely proportional to it
wtintermed <- degree(random.eq, mode = "all", loops = F)
hilo <- sum(range(wtintermed))
wtintermed <- hilo - wtintermed
wtvec1 <- wtintermed / sum(wtintermed)
```
temp1 <- as_adjacency_matrix(random.eq, sparse = F)
diag(temp1) <- 1 # nodes invaded stay invaded
msf.outex <- smartsurv(adjmat = temp1,
 stoch = F,
 nrealz = 1)
temp <-
 smartsurv.weight(ss.out = msf.outex,
 adjmat = temp1,
 wtvec = wtvec1)

Note that startwt gives output that includes number of nodes invasion free
numinvfree <- temp$tsampfree$sampfree # trait for coloring nodes
numinvfree

[49] 22.10630 18.90945

nnodes <- dim(temp1)[1] # the total number of nodes
pall <- viridis_pal(option = "C",
 direction = -1,
 end = .8)

create palette that incorporates the possible extremes in terms of number of
nodes free from invasion (0 and nnodes-1) to make comparison across figures
easier
nodecol = pall(15)[as.numeric(cut(c(0, numinvfree, (nnodes - 1)), breaks = 15))]
nodecol <- nodecol[2:(nnodes + 1)]

plot(
 random.eq,
 vertex.frame.color = nodecol,
 vertex.label.cex = 0.5,
 vertex.label.color = 'white',
 vertex.size = 10,
 edge.arrow.size = 0.3,
 edge.curved = F,
 vertex.color = nodecol,
 layout = layout.random,
 sub = 'Darker colors indicate better sampling nodes'
)

title(main = 'Random graph: higher degree nodes less likely starting nodes (deterministic links)',
 cex.main = 0.9)
Random graph: higher degree nodes less likely starting nodes (deterministic links)

Darker colors indicate better sampling nodes

Small world network

Small world network: nodes equally likely to be the starting node

```r
# generate a small world network with 50 nodes
small.eq <- sample_smallworld(
  dim = 1,
  size = 50,
  nei = 2,
  p = 0.05,
  loops = F
)

layout.small <- layout_with_kk(small.eq)

plot(
  small.eq,
  edge.arrow.size = 0.3,
  vertex.size = 10,
  vertex.label.cex = 0.5,
  layout = layout.small,
  vertex.color = 'lightblue'
)
```
find the value of nodes for sampling based on a deterministic model

temp1 <- as_adjacency_matrix(small.eq, sparse = F)
diag(temp1) <- 1 # nodes invaded stay invaded
temp2 <- multistart(adjmat = temp1, stoch = F)

numinvfree <- colMeans(temp2) # trait for coloring nodes
numinvfree

[25] 15.36 14.20 16.08 18.98 22.76 27.98 27.78 22.46 21.94 23.90 22.38 23.52
[49] 17.34

nnodes <- dim(temp1)[1] # the total number of nodes

pal1 <- viridis_pal(option = "C",
direction = -1,
end = .8)

create palette that incorporates the possible extremes in terms of number of
nodes free from invasion (0 and nnodes-1) to make comparison across figures
easier
nodecol = pal1(15)[as.numeric(cut(c(0, numinvfree, (nnodes - 1)), breaks = 15))]
nodecol <- nodecol[2:(nnodes + 1)]

plot(small.eq,
vertex.frame.color = nodecol,
vertex.label.cex = 0.5,
vertex.label.color = 'white',
vertex.size = 10,
edge.arrow.size = 0.3,
edge.curved = F,
vertex.color = nodecol,
layout = layout.small,
Darker colors indicate better sampling nodes

Note that this small world network is not directed, and movement through the network can be more rapid than in the random graph example. There is a path between any two nodes.

Small world network: likelihood a node is the starting node is proportional to node degree

```r
# find the degree for each node and contract a proportional weight from it
wtintermed <- degree(small.eq, mode = "all", loops = F)
wtvec1 <- wtintermed / sum(wtintermed)

temp1 <- as_adjacency_matrix(small.eq, sparse = F)
diag(temp1) <- 1  # nodes invaded stay invaded
msf.outex <- smartsurv(adjmat = temp1,
                      stoch = F,
                      nrealz = 1)

temp <- smartsurv.weight(ss.out = msf.outex,
                          adjmat = temp1,
                          wtvec = wtvec1)

# Note that startwt gives output that includes number of nodes invasion free
```
numinvfree <- temp$tsampfree$sampfree # trait for coloring nodes
numinvfree

nnodes <- dim(temp1)[1] # the total number of nodes

pal1 <- viridis_pal(option = "C",
 direction = -1,
 end = .8)

create palette that incorporates the possible extremes in terms of number of
nodes free from invasion (0 and nnodes-1) to make comparison across figures
easier
nodecol = pal1(15)[as.numeric(cut(c(0, numinvfree, (nnodes - 1)), breaks = 15))]
nodecol <- nodecol[2:(nnodes + 1)]

plot(
 small.eq,
 vertex.frame.color = nodecol,
 vertex.label.cex = 0.5,
 vertex.label.color = 'white',
 vertex.size = 10,
 edge.arrow.size = 0.3,
 edge.curved = F,
 vertex.color = nodecol,
 layout = layout.small,
 sub = 'Darker colors indicate better sampling nodes'
)

title(main = 'Small world: higher degree nodes more likely starting nodes (deterministic links)',
 cex.main = 0.9)
Small world: higher degree nodes more likely starting nodes (deterministic links)

Darker colors indicate better sampling nodes

This has little effect for the small world model because the degree is so similar across all nodes.

Small world network: likelihood a node is the starting node is inversely proportional to node degree

```r
# find the degree for each node and contract a weight inversely proportional to it
wtintermed <- degree(small.eq, mode = "all", loops = F)
hilo <- sum(range(wtintermed))
wtintermed <- hilo - wtintermed
wtvec1 <- wtintermed / sum(wtintermed)

temp1 <- as_adjacency_matrix(small.eq, sparse = F)
diag(temp1) <- 1 # nodes invaded stay invaded
msf.outex <- smartsurv(adjmat = temp1,
                      stoch = F,
                      nrealz = 1)

temp <-
    smartsurv.weight(ss.out = msf.outex,
                    adjmat = temp1,
                    wtvec = wtvec1)

# Note that startwt gives output that includes number of nodes invasion free
numinvfree <- temp$tsampfree$sampfree # trait for coloring nodes
numinvfree
```
nnodes <- dim(temp1)[1] # the total number of nodes

pal1 <- viridis_pal(option = "C",
 direction = -1,
 end = .8)

create palette that incorporates the possible extremes in terms of number of
nodes free from invasion (0 and nnodes-1) to make comparison across figures
easier
nodecol = pal1(15)[as.numeric(cut(c(0, numinvfree, (nnodes - 1)), breaks = 15))]
nodecol <- nodecol[2:(nnodes + 1)]

plot(
 small.eq,
 vertex.frame.color = nodecol,
 vertex.label.cex = 0.5,
 vertex.label.color = 'white',
 vertex.size = 10,
 edge.arrow.size = 0.3,
 edge.curved = F,
 vertex.color = nodecol,
 layout = layout.small,
 sub = 'Darker colors indicate better sampling nodes'
)

title(main = 'Small world: higher degree nodes less likely starting nodes (deterministic links)',
 cex.main = 0.9)
Small world: higher degree nodes less likely starting nodes (deterministic links)

Darker colors indicate better sampling nodes

Scale-free network

Scale-free network: nodes equally likely to be the starting node

```r
# generate a scale-free network with 50 nodes
sf.eq <- sample_pa(
    n = 50,
    power = 1,
    m = 1,
    directed = F
)

layout.sf <- layout_with_kk(sf.eq)

plot(
    sf.eq,
    edge.arrow.size = 0.3,
    vertex.size = 10,
    vertex.label.cex = 0.5,
    layout = layout.sf,
    vertex.color = 'lightblue'
)
```
find the value of nodes for sampling based on a deterministic model

temp1 <- as_adjacency_matrix(sf.eq, sparse = F)
diag(temp1) <- 1 # nodes invaded stay invaded
temp2 <- multistart(adjmat = temp1, stoch = F)

numinvfree <- colMeans(temp2) # trait for coloring nodes

nnodes <- dim(temp1)[1] # the total number of nodes

colours <- viridis_pal(option = "C",
direction = -1,
end = .8)

create palette that incorporates the possible extremes in terms of number of
nodes free from invasion (0 and nnodes-1) to make comparison across figures
easier
nodecol = colours[15][as.numeric(cut(c(0, numinvfree, (nnodes - 1)), breaks = 15))]
nodecol <- nodecol[2:(nnodes + 1)]

plot(
sf.eq,
vertex.frame.color = nodecol,
vertex.label.cex = 0.5,
vertex.label.color = 'white',
vertex.size = 10,
edge.arrow.size = 0.3,
edge.curved = F,
vertex.color = nodecol,
layout = layout.sf,
Darker colors indicate better sampling nodes

Scale-free network: likelihood a node is the starting node is proportional to node degree

```r
# find the degree for each node and construct a proportional weight from it
wtintermed <- degree(sf.eq, mode = "all", loops = F)
wtvec1 <- wtintermed / sum(wtintermed)

temp1 <- as_adjacency_matrix(sf.eq, sparse = F)
diag(temp1) <- 1 # nodes invaded stay invaded
msf.outex <- smartsurv(adjmat = temp1,
                        stoch = F,
                        nrealz = 1)

temp <- smartsurv.weight(ss.out = msf.outex,
                          adjmat = temp1,
                          wtvec = wtvec1)

# Note that startwt gives output that includes number of nodes invasion free
numinvfree <- temp$tsampfree$sampfree # trait for coloring nodes
numinvfree
```

nnodes <- dim(temp1)[1] # the total number of nodes

pal1 <- viridis_pal(option = "C",
 direction = -1,
 end = .8)

create palette that incorporates the possible extremes in terms of number of
nodes free from invasion (0 and nnodes-1) to make comparison across figures
easier
nodecol = pal1(15)[as.numeric(cut(c(0, numinvfree, (nnodes - 1)), breaks = 15))]
nodecol <- nodecol[2:(nnodes + 1)]

plot(
 sf.eq,
 vertex.frame.color = nodecol,
 vertex.label.cex = 0.5,
 vertex.label.color = 'white',
 vertex.size = 10,
 edge.arrow.size = 0.3,
 edge.curved = F,
 vertex.color = nodecol,
 layout = layout.sf,
 sub = 'Darker colors indicate better sampling nodes'
)

title(main = 'Scale-free: higher degree nodes more likely starting nodes (deterministic links)',
 cex.main = 0.9)
Scale-free: higher degree nodes more likely starting nodes (deterministic links)

Darker colors indicate better sampling nodes

Scale-free network: likelihood a node is the starting node is inversely proportional to node degree

```r
# find the degree for each node and contruct a weight inversely proportional to it
wtintermed <- degree(sf.eq, mode = "all", loops = F)
hilo <- sum(range(wtintermed))
wtintermed <- hilo - wtintermed

wtvec1 <- wtintermed / sum(wtintermed)

temp1 <- as_adjacency_matrix(sf.eq, sparse = F)
diag(temp1) <- 1 # nodes invaded stay invaded
msf.outex <- smartsurv(adjmat = temp1,
                      stoch = F,
                      nrealz = 1)

temp <-
    smartsurv.weight(ss.out = msf.outex,
                    adjmat = temp1,
                    wtvec = wtvec1)

# Note that startwt gives output that includes number of nodes invasion free
numinvfree <- temp$tsampfree$sampfree $sampfree # trait for coloring nodes
numinvfree
```
nnodes <- dim(temp1)[1] # the total number of nodes

pal1 <- viridis_pal(option = "C",
 direction = -1,
 end = .8)

create palette that incorporates the possible extremes in terms of number of
nodes free from invasion (0 and nnodes-1) to make comparison across figures
easier
nodecol = pal1(15)[as.numeric(cut(c(0, numinvfree, (nnodes - 1)), breaks = 15))]
nodecol <- nodecol[2:(nnodes + 1)]

plot(sf.eq,
 vertex.frame.color = nodecol,
 vertex.label.cex = 0.5,
 vertex.label.color = 'white',
 vertex.size = 10,
 edge.arrow.size = 0.3,
 edge.curved = F,
 vertex.color = nodecol,
 layout = layout.sf,
 sub = 'Darker colors indicate better sampling nodes'
)
title(main = 'Scale-free: higher degree nodes less likely starting nodes (deterministic links)',
 cex.main = 0.9)
Scale–free: higher degree nodes less likely starting nodes (deterministic links)

Darker colors indicate better sampling nodes

Using weights based on the number of information sources, or the quality of information sources, is one way to integrate the socioeconomic network and the biophysical network, with an egocentric network focus. There are many other possibilities for linking the two networks, potentially drawing on more information about the network of information communication. Examples of this analysis applied to potential spread of disease through a seed system are available in the following two studies.

References

More information and references are available at www.garrettlab.com/ina

Andersen et al. 2019 and Buddenhagen et al. 2017 have examples of the application of the algorithms in INA function smartsurv.

